If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(X+60)=180
We move all terms to the left:
X(X+60)-(180)=0
We multiply parentheses
X^2+60X-180=0
a = 1; b = 60; c = -180;
Δ = b2-4ac
Δ = 602-4·1·(-180)
Δ = 4320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4320}=\sqrt{144*30}=\sqrt{144}*\sqrt{30}=12\sqrt{30}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-12\sqrt{30}}{2*1}=\frac{-60-12\sqrt{30}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+12\sqrt{30}}{2*1}=\frac{-60+12\sqrt{30}}{2} $
| -8w+-17w+12w=13 | | 5m+36=26 | | 12x-17+23x=7(-3+5x) | | 4k−3−2k=2k+5−2k | | 75=6.28x | | u(1/8)=5/6 | | 18/6=8/x | | 15k+45=760 | | 4x-32+3x+9=180 | | 6z-2z-z=9 | | 7(5+x)-x=42 | | 2k+35=12k+15 | | x=-4/9 | | u/7=1/6 | | 2.7^(2x+1)=8 | | 6x+9x+2=−6+15x+8 | | 12=3+y | | 1.8=51/x | | 2(5x+1)-2x=2-2(3x4) | | x/9+5/3=-2 | | 5^x=7^3x-4 | | 156=x+x | | 1v+2=20 | | 4x/(-8)=-8 | | 0.12n+0.07(4250-n)=0.08(4250) | | 107+3x+1=180 | | 2c-12=19c+2 | | 9*6*h=108+18h+12h | | 2.7^2x+1=8 | | 4(m-2)=-2(2m+3) | | 20x+700=1680 | | -6(v+1)=2(1+3v)-7 |