If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(3X+6)=44
We move all terms to the left:
X(3X+6)-(44)=0
We multiply parentheses
3X^2+6X-44=0
a = 3; b = 6; c = -44;
Δ = b2-4ac
Δ = 62-4·3·(-44)
Δ = 564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{564}=\sqrt{4*141}=\sqrt{4}*\sqrt{141}=2\sqrt{141}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{141}}{2*3}=\frac{-6-2\sqrt{141}}{6} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{141}}{2*3}=\frac{-6+2\sqrt{141}}{6} $
| 72+8m=192 | | 23n-63=144 | | 23n-6=144 | | 0=60+3x | | 650=35x+125 | | 2.16b+4=0.9b-17 | | (10-3.3)/3.3=x/10 | | (10-x)/x=2 | | (10-x)/x=2.0 | | -4(4y+-4)=-64 | | -4(4y+4)=-64 | | (10-3.3)/3.3=x | | (10-x)/x=2.03 | | -5(-1y+7)=-60 | | 3(9x-9)=30 | | 3/5(9x-9)=6 | | -17j-5=-18j+6 | | -11b-(-13)b=-20 | | 8y+2=5y | | c+-10c+-8=10 | | -9c+-8=10 | | -7f+18=-8f | | 5-(-2)h=11 | | 9-6j=5j | | 434=0.07x | | 2x-20+6x+40=180 | | 4a×2÷2=16 | | 3(v+1)+2v=5(v-1)=5 | | 2a*a=20 | | 2x+20+(5x+40)=180 | | 4/mm=1 | | (14+3)t=35 |