If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-42X+44=0
a = 1; b = -42; c = +44;
Δ = b2-4ac
Δ = -422-4·1·44
Δ = 1588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1588}=\sqrt{4*397}=\sqrt{4}*\sqrt{397}=2\sqrt{397}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-2\sqrt{397}}{2*1}=\frac{42-2\sqrt{397}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+2\sqrt{397}}{2*1}=\frac{42+2\sqrt{397}}{2} $
| b+b+100=110 | | a+a+100=110 | | 9p-90=8p-56 | | 12x+8=22x-17 | | 4b+9-2=b | | 0=5x^2+8x-106 | | 0=5x2+8x-106 | | -x=-4x=4 | | (4x+9)+(6x-29)=360 | | 10^(x+5)=8^(2x) | | 9x6=108/2 | | -3(x+4)=3x=-5 | | 4/x+6=2/x+2 | | L=2w+10 | | 7k-5=k | | -2(x-3)=8x=-1 | | 7x^2-35x-5=0 | | 3k+2{5k-3}=7 | | -6x-30=-4(x×6)-3x | | 3p-1=13 | | 5(x-3)=10x=5 | | 132=(2w+10)w | | 27=3u+6u | | -3/5+21=b | | 5(x+3)=10x=-1 | | w-(1-3w)=8w1 | | 3+5x+3x=-13×6x | | 4t+30=8t+26 | | y=55-50 | | 4x2−33x−27=0 | | 2(x+3)=4x=-1 | | 3(x+6)=2(x+7) |