X^2+24x-190=0

Simple and best practice solution for X^2+24x-190=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2+24x-190=0 equation:



X^2+24X-190=0
a = 1; b = 24; c = -190;
Δ = b2-4ac
Δ = 242-4·1·(-190)
Δ = 1336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1336}=\sqrt{4*334}=\sqrt{4}*\sqrt{334}=2\sqrt{334}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-2\sqrt{334}}{2*1}=\frac{-24-2\sqrt{334}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+2\sqrt{334}}{2*1}=\frac{-24+2\sqrt{334}}{2} $

See similar equations:

| 4g8=2g+14 | | 8x+3=2x+3 | | 11-x/3=16 | | 9(n-91)=72 | | -x/4+3=7 | | 4x^2+24x=140 | | 84=-20x4 | | 9.8x+17=-16+7.6x | | (5x-20=3x+30)+2x+10+180 | | 4(24−u)/9=−4u+12 | | (2x-24)=(x+5)=180 | | 3k+10=5 | | 33=3(r+4) | | 301=7(4x+11) | | 5/2t-t=3+3/t | | 180+25x=47.5x | | n+(-16)=-19 | | 16x2-77x+20=0 | | 3(-6+5v=-39-7v | | y=0.40(2^×) | | -2(g-3)-4=18 | | 0.5+-1.5x=8 | | A=3.14x2.1^2 | | 7+20x=5+0.30 | | 6-2/3c=18 | | 18y+46=154 | | y=0.40(2^) | | 21x2-177x+67=0 | | (x−6)7/5=128 | | 9y=729 | | (17-2r)/3=11 | | 48.75=7.5x |

Equations solver categories