R(x)=x(24-x)

Simple and best practice solution for R(x)=x(24-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for R(x)=x(24-x) equation:



(R)=R(24-R)
We move all terms to the left:
(R)-(R(24-R))=0
We add all the numbers together, and all the variables
R-(R(-1R+24))=0
We calculate terms in parentheses: -(R(-1R+24)), so:
R(-1R+24)
We multiply parentheses
-1R^2+24R
Back to the equation:
-(-1R^2+24R)
We get rid of parentheses
1R^2-24R+R=0
We add all the numbers together, and all the variables
R^2-23R=0
a = 1; b = -23; c = 0;
Δ = b2-4ac
Δ = -232-4·1·0
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$R_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$R_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{529}=23$
$R_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-23}{2*1}=\frac{0}{2} =0 $
$R_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+23}{2*1}=\frac{46}{2} =23 $

See similar equations:

| 2x+x+2x+3x=180 | | 11=-3/10a+2 | | 4×z-45=z | | (x-25)+(6x-5)=180 | | 9x²+8x=0 | | 4x^2+80x+384=2.5 | | 16=-350w-80+150w | | -9r-8=136 | | ?+7x=180 | | (2/3c)-2=2+c | | (8+3)+(x-3)=180 | | 4a+11=7a-4 | | 13=w/2-12 | | m=12(15 | | b-3=1/2 | | q-(1/2)=(1/4) | | -9+2x=-22 | | t/1.2=1 | | 6(y+1)=8y | | 3j=9(j-10) | | 3(g-9)=-6 | | 3h/6=-4 | | 2(j+2)+2=10 | | Px0.4=2 | | 5x^2-12=-15 | | (x-5)/7=40 | | 7.8=1.3(p+3) | | 2(g-8)+4=8 | | 2.6(j-7)-1=1.6 | | -k+1111(k+1)=2k | | 2n=-2n+1 | | -k+5(k+1)=2k |

Equations solver categories