R(x)=(320+-20x)(70+5x)

Simple and best practice solution for R(x)=(320+-20x)(70+5x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for R(x)=(320+-20x)(70+5x) equation:



(R)=(320+-20R)(70+5R)
We move all terms to the left:
(R)-((320+-20R)(70+5R))=0
We add all the numbers together, and all the variables
R-((-20R)(5R+70))=0
We multiply parentheses ..
-((-100R^2-1400R))+R=0
We calculate terms in parentheses: -((-100R^2-1400R)), so:
(-100R^2-1400R)
We get rid of parentheses
-100R^2-1400R
Back to the equation:
-(-100R^2-1400R)
We get rid of parentheses
100R^2+1400R+R=0
We add all the numbers together, and all the variables
100R^2+1401R=0
a = 100; b = 1401; c = 0;
Δ = b2-4ac
Δ = 14012-4·100·0
Δ = 1962801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$R_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$R_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1962801}=1401$
$R_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1401)-1401}{2*100}=\frac{-2802}{200} =-14+1/100 $
$R_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1401)+1401}{2*100}=\frac{0}{200} =0 $

See similar equations:

| 2(w-49)=50 | | -2+6z-8=12 | | 5a^2=12 | | -81=-3(u-71) | | g/–11=–27 | | (Q-3)x5=10 | | 8(b-86)=64 | | 40-120=15x+80 | | 5=m=9 | | x+35+3x+80+x-10=180 | | 160-420=x | | 4x+6x-2=7x+9 | | 9p-7+5p-1=90 | | 5-0=x | | 0.4+-1.2=0.15x+0.8 | | –2x=4 | | -17-2h=3(7h+8) | | (3x-7)/4=6.5 | | 0.4+-1.2=0.15x+0.8x100 | | 100-400=x | | (5x-2x+3)= | | x+17+3x+28=x^2 | | 100(0.4+-1.2=0.15x+0.8) | | –x+8=13 | | 165-420=x | | 32=-3(7z-2) | | 0.8x-2/5=3/5x-1.2 | | 2e-1=5e-8 | | 5(c-8)-3(2+12)=-84 | | 12y-34=460 | | 5(x+5)=2x-4+3x | | 3x-13+2x-12=180 |

Equations solver categories