P=x(-1.20x+1844)-80(-1.20x+1844)

Simple and best practice solution for P=x(-1.20x+1844)-80(-1.20x+1844) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P=x(-1.20x+1844)-80(-1.20x+1844) equation:



=P(-1.20P+1844)-80(-1.20P+1844)
We move all terms to the left:
-(P(-1.20P+1844)-80(-1.20P+1844))=0
We add all the numbers together, and all the variables
-(P(-1.2P+1844)-80(-1.2P+1844))=0
We calculate terms in parentheses: -(P(-1.2P+1844)-80(-1.2P+1844)), so:
P(-1.2P+1844)-80(-1.2P+1844)
We multiply parentheses
-1P^2+1844P+80P-147520
We add all the numbers together, and all the variables
-1P^2+1924P-147520
Back to the equation:
-(-1P^2+1924P-147520)
We get rid of parentheses
1P^2-1924P+147520=0
We add all the numbers together, and all the variables
P^2-1924P+147520=0
a = 1; b = -1924; c = +147520;
Δ = b2-4ac
Δ = -19242-4·1·147520
Δ = 3111696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3111696}=1764$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1924)-1764}{2*1}=\frac{160}{2} =80 $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1924)+1764}{2*1}=\frac{3688}{2} =1844 $

See similar equations:

| 2x-26=6x | | 2.7=x/3 | | 3/x+2=x+4 | | (-2/3)j=8 | | -4y-49=-7(y+4) | | P=x(-45x+1250)-10(-45x+1250) | | 17^-5x=5^-x-8 | | 3(u-6)=5u-10 | | 6x^-16x=0 | | 13x+40=116 | | (2*6)*3=(2+1)*(6+x) | | 3*x-9=18 | | (2D-1)*y=0 | | 39+2x+1=180 | | (2D-1)y=0 | | (2*6)*3=2+1*6+x | | 8/3=5/2x+4 | | 9w-w=64 | | 10-5(x-11)x=3 | | x/3=8+11 | | 42k-3=42k | | 15-3(x-4)=-(2x-6) | | 83+4x+1=180 | | 2-n=2-n | | 7^x+2+3=444 | | 37-y=234 | | x/2-10=x/4+11 | | 6+1-2n+4n=2-n+4n | | -2(-6b+7)=-110 | | 3x+2+71=180 | | 2x+10x=9 | | 32=192x |

Equations solver categories