P(x)=x(105-5x)-3(105-5x)

Simple and best practice solution for P(x)=x(105-5x)-3(105-5x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P(x)=x(105-5x)-3(105-5x) equation:



(P)=P(105-5P)-3(105-5P)
We move all terms to the left:
(P)-(P(105-5P)-3(105-5P))=0
We add all the numbers together, and all the variables
P-(P(-5P+105)-3(-5P+105))=0
We calculate terms in parentheses: -(P(-5P+105)-3(-5P+105)), so:
P(-5P+105)-3(-5P+105)
We multiply parentheses
-5P^2+105P+15P-315
We add all the numbers together, and all the variables
-5P^2+120P-315
Back to the equation:
-(-5P^2+120P-315)
We get rid of parentheses
5P^2-120P+P+315=0
We add all the numbers together, and all the variables
5P^2-119P+315=0
a = 5; b = -119; c = +315;
Δ = b2-4ac
Δ = -1192-4·5·315
Δ = 7861
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-119)-\sqrt{7861}}{2*5}=\frac{119-\sqrt{7861}}{10} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-119)+\sqrt{7861}}{2*5}=\frac{119+\sqrt{7861}}{10} $

See similar equations:

| -2=x=15 | | q-12=40 | | 2/5n-4/5=n | | X=(7-3i)(6+i) | | f– 56= 4 | | 1080=110+(8x-1)+(5x+36)+116+(7x+19)+(6x-2) | | -3x-10=29 | | 14+n=17 | | 19g−14g=20 | | 2/8n+1=-25 | | -1/3m+5=26 | | 4=106x | | -1/3m+5=25 | | 7/9w=7. | | (7y)474=77⋅75 | | 1⁄3n=4 | | -2t-8=24 | | 79w=7. | | 4x²-9x+4=0 | | -7+x/2=14 | | -2+x/11=-5 | | 3+x/5=-8 | | 1.5=0.1/x | | –3x–6=x–20+x | | -8=8+x/3 | | m+90=149 | | 3u+7u=10 | | 5x^2+x=-4x+83 | | -5k-4=6-7k | | 28(15)=20(2x+3) | | 2=2v−4 | | 4v-3v=2 |

Equations solver categories