If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X=(7-3X)(6+X)
We move all terms to the left:
X-((7-3X)(6+X))=0
We add all the numbers together, and all the variables
X-((-3X+7)(X+6))=0
We multiply parentheses ..
-((-3X^2-18X+7X+42))+X=0
We calculate terms in parentheses: -((-3X^2-18X+7X+42)), so:We get rid of parentheses
(-3X^2-18X+7X+42)
We get rid of parentheses
-3X^2-18X+7X+42
We add all the numbers together, and all the variables
-3X^2-11X+42
Back to the equation:
-(-3X^2-11X+42)
3X^2+11X+X-42=0
We add all the numbers together, and all the variables
3X^2+12X-42=0
a = 3; b = 12; c = -42;
Δ = b2-4ac
Δ = 122-4·3·(-42)
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-18\sqrt{2}}{2*3}=\frac{-12-18\sqrt{2}}{6} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+18\sqrt{2}}{2*3}=\frac{-12+18\sqrt{2}}{6} $
| f– 56= 4 | | 1080=110+(8x-1)+(5x+36)+116+(7x+19)+(6x-2) | | -3x-10=29 | | 14+n=17 | | 19g−14g=20 | | 2/8n+1=-25 | | -1/3m+5=26 | | 4=106x | | -1/3m+5=25 | | 7/9w=7. | | (7y)474=77⋅75 | | 1⁄3n=4 | | -2t-8=24 | | 79w=7. | | 4x²-9x+4=0 | | -7+x/2=14 | | -2+x/11=-5 | | 3+x/5=-8 | | 1.5=0.1/x | | –3x–6=x–20+x | | -8=8+x/3 | | m+90=149 | | 3u+7u=10 | | 5x^2+x=-4x+83 | | -5k-4=6-7k | | 28(15)=20(2x+3) | | 2=2v−4 | | 4v-3v=2 | | 40=n+5 | | 13x-3/4=x-0,75 | | 28/15)=20/2x+3) | | -8x+12=-52 |