P(x)=3x2-5x+1L(x)=x2-7x-3P(x)+L(x)=

Simple and best practice solution for P(x)=3x2-5x+1L(x)=x2-7x-3P(x)+L(x)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P(x)=3x2-5x+1L(x)=x2-7x-3P(x)+L(x)= equation:



(P)=3P^2-5P+1(P)=P2-7P-3(P)+(P)=
We move all terms to the left:
(P)-(3P^2-5P+1(P))=0
We get rid of parentheses
-3P^2+P+5P-1P=0
We add all the numbers together, and all the variables
-3P^2+5P=0
a = -3; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·(-3)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*-3}=\frac{-10}{-6} =1+2/3 $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*-3}=\frac{0}{-6} =0 $

See similar equations:

| 6x+33=6(x+6) | | x/8x5=9 | | .0.25d=-16 | | 8-4x=(-71)+3x | | 2x–8=5x+7 | | 10(4+x)=-30 | | 5w-24=6 | | 3x²+18x-6=100 | | B=2x+21,A=5x-15 | | 2x+3x²+18=100 | | 48x−6,23=6(8x+6) | | A=5x-15,B=2x+21 | | 9x*7x=80 | | 23=4/5f+19 | | 4(x−5)=-12 | | (x−5)4=-12 | | 56=2(3x-8) | | 4=x+0.6x | | 123x+576×608764=26662836529 | | 10(12x+4)-2=138 | | 18y+6=4(30-6) | | 3r+2=r+9×2 | | 3/x+1/4=2/x | | 5x-13=8x+19 | | y^-0,5=0,5 | | 9x=3/2 | | 9x3/2=x | | 0,6(2x-3)=0,4(9+3x)-2(x-0,9) | | (XxX)+½x+¼x+1=100 | | XxX+½x+¼x+1=100 | | (x^2+7x+11)^(x^2-14x+44)=1 | | 2(2+x)-3(x-3)=5 |

Equations solver categories