P(n)=n(120-n)-50n

Simple and best practice solution for P(n)=n(120-n)-50n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P(n)=n(120-n)-50n equation:



(P)=P(120-P)-50P
We move all terms to the left:
(P)-(P(120-P)-50P)=0
We add all the numbers together, and all the variables
P-(P(-1P+120)-50P)=0
We calculate terms in parentheses: -(P(-1P+120)-50P), so:
P(-1P+120)-50P
We add all the numbers together, and all the variables
-50P+P(-1P+120)
We multiply parentheses
-1P^2-50P+120P
We add all the numbers together, and all the variables
-1P^2+70P
Back to the equation:
-(-1P^2+70P)
We get rid of parentheses
1P^2-70P+P=0
We add all the numbers together, and all the variables
P^2-69P=0
a = 1; b = -69; c = 0;
Δ = b2-4ac
Δ = -692-4·1·0
Δ = 4761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4761}=69$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-69)-69}{2*1}=\frac{0}{2} =0 $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-69)+69}{2*1}=\frac{138}{2} =69 $

See similar equations:

| x-12=66 | | x+86+x+62+x+50=360 | | 12x;=(3,32) | | -0.4(x-8)=-2 | | 8p+42+66=180 | | 3/5=N/5o | | 0.4(x-8)=-2 | | X-4y-16=0 | | 24.3-v=16.5 | | x+13+87+74+2x=360 | | 3x^2/2=486 | | 2.5=d+0.8 | | ½x+7=24 | | 1/2=n10 | | 10x-8=2x+64 | | −3v−8=−4v+1 | | 10(5x+4)=-440 | | 0.5x+41​ x=13.5 | | x+10+x+51+x+59=360 | | 2(3-6r)=102 | | 1/2÷3x=12 | | -340=7x+3(7x-20) | | 90=8x+x2 | | 56+ t = 7 | | (4y-2)(2y-2)=12 | | x+6.5=12.4 | | p=12+17 | | X.2.6+x=11.2 | | 8(-11x+9)=1392 | | (2b+3)(3b-18)=81 | | x+45+2x-27+99=360 | | 50x+500=60x |

Equations solver categories