If it's not what You are looking for type in the equation solver your own equation and let us solve it.
N2-25+4=15
We move all terms to the left:
N2-25+4-(15)=0
We add all the numbers together, and all the variables
N^2-36=0
a = 1; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·1·(-36)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$N_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$N_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$N_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*1}=\frac{-12}{2} =-6 $$N_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*1}=\frac{12}{2} =6 $
| 8-3*4(x-4)=1*8(x+1) | | 4a+10=2a+20 | | -8x-((3x-1)+56=0 | | 8(7-x)=(3x-1 | | (x^2+2x-3)*(x^2+2x-2)=6 | | (x^2+2x-3)(x^2+2x-2)=6 | | x^2+3x+2=110 | | 3^x+3^(x-1)-3^(x-2)=11 | | 12x+6-3×=-6x-30+× | | (2x-3)^4+(2x-5)^4=2 | | h²+6=16 | | (2x-3)4+(2x-5)4=2 | | 1=7πx | | 2x²+6x-20=0 | | t/6+t/8-(t+15)/6=1 | | 4(t-2)+4t=4(2t+4)-13 | | X^(3)+X^(2)+11x=0 | | 6x-9x+5x=15-13=x | | 0.80=×÷0.100-x | | 0.80=×/0.100-x | | 6c-14=-5c+4+9c | | 2(y+2)+4y=-8 | | -4=2(u-7)+3u | | 5x+4=3×+16 | | 0.8x-x=0 | | 6x*2=5*2 | | 18-2r=4 | | 18r-2r=4 | | 18r-2r=4r | | 5x/3-5=5 | | 9x-4=6x-64 | | P(x)=-0.5x^2+23x+50 |