If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=(H+6)(H+5)+(H+3)(H+8)
We move all terms to the left:
-((H+6)(H+5)+(H+3)(H+8))=0
We multiply parentheses ..
-((+H^2+5H+6H+30)+(H+3)(H+8))=0
We calculate terms in parentheses: -((+H^2+5H+6H+30)+(H+3)(H+8)), so:We get rid of parentheses
(+H^2+5H+6H+30)+(H+3)(H+8)
We get rid of parentheses
H^2+5H+6H+(H+3)(H+8)+30
We multiply parentheses ..
H^2+(+H^2+8H+3H+24)+5H+6H+30
We add all the numbers together, and all the variables
H^2+(+H^2+8H+3H+24)+11H+30
We get rid of parentheses
H^2+H^2+8H+3H+11H+24+30
We add all the numbers together, and all the variables
2H^2+22H+54
Back to the equation:
-(2H^2+22H+54)
-2H^2-22H-54=0
a = -2; b = -22; c = -54;
Δ = b2-4ac
Δ = -222-4·(-2)·(-54)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{13}}{2*-2}=\frac{22-2\sqrt{13}}{-4} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{13}}{2*-2}=\frac{22+2\sqrt{13}}{-4} $
| 3(2x-3)=7x+5 | | (3x+6)+x+(x+1)=180 | | 4x+7=-2x-9 | | 84d−4=5d− | | 5x-26=43 | | 15x-12-5=-3 | | 3(2a-360)=12+3a | | F(x)=3x2+12x+5 | | 4g+5g(7g-3)=9(g-5 | | -5-10n=95 | | 29/5=4/z | | -3(2x+4)=2(x-3) | | 10-12x-2=-28 | | -15=3m/5 | | 3+4n+1=-22 | | 300-2x=240 | | -4(z+5)=-32 | | 2x-5=8×+7 | | h÷-7.5=-4 | | 3v-(-2)=20 | | 24x-10+5=7 | | 6. 3v-(-2)=20 | | .5x+5=7 | | 7(7n-3)=33-5n | | 3x+5(2−x)=−16 | | 8x+(14+x)=59 | | 8a+5a=-3(a-2)+2(-2+7a) | | 3x+5(2−x)=−16. | | 3-3(2-2b)=4(b-3)+4 | | 16=s-19 | | 5-(2a-4)=27 | | a/18=3-3a |