H(x)=-4(x-3)(x-1)

Simple and best practice solution for H(x)=-4(x-3)(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(x)=-4(x-3)(x-1) equation:



(H)=-4(H-3)(H-1)
We move all terms to the left:
(H)-(-4(H-3)(H-1))=0
We multiply parentheses ..
-(-4(+H^2-1H-3H+3))+H=0
We calculate terms in parentheses: -(-4(+H^2-1H-3H+3)), so:
-4(+H^2-1H-3H+3)
We multiply parentheses
-4H^2+4H+12H-12
We add all the numbers together, and all the variables
-4H^2+16H-12
Back to the equation:
-(-4H^2+16H-12)
We get rid of parentheses
4H^2-16H+H+12=0
We add all the numbers together, and all the variables
4H^2-15H+12=0
a = 4; b = -15; c = +12;
Δ = b2-4ac
Δ = -152-4·4·12
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{33}}{2*4}=\frac{15-\sqrt{33}}{8} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{33}}{2*4}=\frac{15+\sqrt{33}}{8} $

See similar equations:

| m-18/9=6 | | 3-p-7=2 | | 1Y-5y+8Y=9y+78Y | | 14=15y-8y | | 2/7-1/14x+2=42/14 | | -5x-8=-3x-4 | | 63+5x=6 | | 15-2x=6-3x | | 0x=-49 | | 2/7-1/14x+2=3.1/14 | | y+38/8=7 | | 2/7-1/14x+2=31/14 | | y/6+1=y-4/4 | | -11=4r+5 | | Y-6=-1/3(x-12) | | 0.2=150*a | | 9=3-2s | | 2=2x-5=5(x+3) | | -39=-7(7v+5)-(4+7v) | | 5(x-2)=x+7 | | 98=9v-1 | | 8(p+3)=40 | | 6(x-7)+14=4(x-5) | | |2x+1|+6=3 | | c/3+4=7 | | H(x)=(-4x-5)(-x+5) | | N+3=2n+6 | | -x-14=2x-41 | | 11+10p=21 | | 14p=4p+40 | | 17-13x=x(2-3) | | 5+3j=14 |

Equations solver categories