If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(H)=(-4H-5)(-H+5)
We move all terms to the left:
(H)-((-4H-5)(-H+5))=0
We add all the numbers together, and all the variables
H-((-4H-5)(-1H+5))=0
We multiply parentheses ..
-((+4H^2-20H+5H-25))+H=0
We calculate terms in parentheses: -((+4H^2-20H+5H-25)), so:We add all the numbers together, and all the variables
(+4H^2-20H+5H-25)
We get rid of parentheses
4H^2-20H+5H-25
We add all the numbers together, and all the variables
4H^2-15H-25
Back to the equation:
-(4H^2-15H-25)
H-(4H^2-15H-25)=0
We get rid of parentheses
-4H^2+H+15H+25=0
We add all the numbers together, and all the variables
-4H^2+16H+25=0
a = -4; b = 16; c = +25;
Δ = b2-4ac
Δ = 162-4·(-4)·25
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{41}}{2*-4}=\frac{-16-4\sqrt{41}}{-8} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{41}}{2*-4}=\frac{-16+4\sqrt{41}}{-8} $
| N+3=2n+6 | | -x-14=2x-41 | | 11+10p=21 | | 14p=4p+40 | | 17-13x=x(2-3) | | 5+3j=14 | | 8x=30-2x | | x–11=16 | | 3x^2+24x-36=100 | | 14,040=70x+12,500 | | -50x+14,040=20x+12,500 | | x+144=1,369,x=1,225 | | (9x-1)/35=1 | | a/3+13=11 | | b/4+14=15 | | 104=5w+14 | | -20+9b=7 | | x^2-24=5 | | -5+2/3w=10 | | 20+9b=7 | | 3x-2=6x-5= | | -3+x/3=-2 | | 3x=-41 | | -x-17=-8 | | a/2+2=-2 | | 3(4x+2)=2(( | | (X+4)*(x+4)-(x*x)=80 | | 4x-3=6x+2= | | x^2-14-11=0 | | 5,1x-0,8=-2,1 | | 6p-20=-8 | | -33/10=2y+1/2 |