H(t)=400-16t2

Simple and best practice solution for H(t)=400-16t2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=400-16t2 equation:



(H)=400-16H^2
We move all terms to the left:
(H)-(400-16H^2)=0
We get rid of parentheses
16H^2+H-400=0
a = 16; b = 1; c = -400;
Δ = b2-4ac
Δ = 12-4·16·(-400)
Δ = 25601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{25601}}{2*16}=\frac{-1-\sqrt{25601}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{25601}}{2*16}=\frac{-1+\sqrt{25601}}{32} $

See similar equations:

| 23-8=6n-n | | 4(a+23)=100 | | (6x-6)^2+4=40 | | -1/3(3/4y+1/2)-(1/6)=0 | | (67)+(61)+(11x-5)+(4x+29)+(6x+13)+(9x-15)=360 | | 4.5x-9.8(4.6-4.5x/9.8)-4.6=0 | | 2p^2-7p-9=0 | | 3.75+5c=18.75 | | (67)+(61)+(11x-5)+(4x+29)+(6x+13)+(9X-15)=720 | | 1=3x−2 | | R+5c=18.75 | | 5/6)r=4(3/5 | | f(-10)=11 | | 3x2-27x+50=0 | | −4+5|5x+2|=6 | | 6t+12=7t-46 | | K-(3)=17;k=14 | | 5t+23=7t-46 | | 3x+16+2x+8+8x−18=180 | | 89=z+19 | | 2(3x–1)+4=20 | | -3(v-89)=21 | | x²+9x-6=0 | | 4(x–7)=2x-4 | | 0.19x+0.4(x-5)=0.01(9x-7) | | 25-14=v | | 32=(4/6x)-34 | | 1-3x=1+3x | | 270=-18p | | 30+10=m | | 8p+2+2p+98=180 | | 0.08x+0.11(x+1000)=490 |

Equations solver categories