If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-27x+50=0
a = 3; b = -27; c = +50;
Δ = b2-4ac
Δ = -272-4·3·50
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-\sqrt{129}}{2*3}=\frac{27-\sqrt{129}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+\sqrt{129}}{2*3}=\frac{27+\sqrt{129}}{6} $
| −4+5|5x+2|=6 | | 6t+12=7t-46 | | K-(3)=17;k=14 | | 5t+23=7t-46 | | 3x+16+2x+8+8x−18=180 | | 89=z+19 | | 2(3x–1)+4=20 | | -3(v-89)=21 | | x²+9x-6=0 | | 4(x–7)=2x-4 | | 0.19x+0.4(x-5)=0.01(9x-7) | | 25-14=v | | 32=(4/6x)-34 | | 1-3x=1+3x | | 270=-18p | | 30+10=m | | 8p+2+2p+98=180 | | 0.08x+0.11(x+1000)=490 | | 8=-4(y-85) | | m+12=;m=2 | | 2u=88 | | 10p-61=3p-5 | | t5=-7 | | x=88=100 | | +15=10n676n | | 19-6m=5 | | 4(x+6)+5x+11=90 | | 4(x+6)+5x+11=180 | | 7c-83=8c-72=2c-13 | | j=12=18 | | 7c-83=8c-72 | | 4(2x+3)+3x=78 |