H(t)=-t2+16t+63

Simple and best practice solution for H(t)=-t2+16t+63 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-t2+16t+63 equation:



(H)=-H2+16H+63
We move all terms to the left:
(H)-(-H2+16H+63)=0
We add all the numbers together, and all the variables
-(-1H^2+16H+63)+H=0
We get rid of parentheses
1H^2-16H+H-63=0
We add all the numbers together, and all the variables
H^2-15H-63=0
a = 1; b = -15; c = -63;
Δ = b2-4ac
Δ = -152-4·1·(-63)
Δ = 477
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{477}=\sqrt{9*53}=\sqrt{9}*\sqrt{53}=3\sqrt{53}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-3\sqrt{53}}{2*1}=\frac{15-3\sqrt{53}}{2} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+3\sqrt{53}}{2*1}=\frac{15+3\sqrt{53}}{2} $

See similar equations:

| 5x=15+3 | | -3(14-14x)=7(1-x) | | 0.9n=72 | | 4+a=4a+5/3 | | X=5x/6+25 | | (-4,2)m=1/4 | | 8^x=25 | | 27(x–9)=–4 | | (24-x)(20+x)=468 | | (5y+5)=(13y+5) | | -7-y=9 | | (3,-7)m=-1 | | 3x+(x-3)=253 | | -3(15r+3)-1=r-10 | | p2+5=10 | | 6a+11=1+4a | | -9.12x=72.96 | | (3)8-9y=35 | | (-1,-4)m=2 | | 1/2(7z-1=4z-3 | | 33300000000=3.33*10n | | 3(k+14)=12k-6(9k-7) | | .49(x+13)=8 | | x=25-28 | | x⁄12=85⁄102 | | -2.1=0.3x | | 30+6p-7(p+6)=5 | | W²-32w-240=0 | | 8(5x-5=8(5x-5) | | 6x^2+40x+50=2x^2-50 | | -3(-3m-12)=0 | | x/12=85/102 |

Equations solver categories