If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(H)=-(4H-12)(4H-36)
We move all terms to the left:
(H)-(-(4H-12)(4H-36))=0
We multiply parentheses ..
-(-(+16H^2-144H-48H+432))+H=0
We calculate terms in parentheses: -(-(+16H^2-144H-48H+432)), so:We get rid of parentheses
-(+16H^2-144H-48H+432)
We get rid of parentheses
-16H^2+144H+48H-432
We add all the numbers together, and all the variables
-16H^2+192H-432
Back to the equation:
-(-16H^2+192H-432)
16H^2-192H+H+432=0
We add all the numbers together, and all the variables
16H^2-191H+432=0
a = 16; b = -191; c = +432;
Δ = b2-4ac
Δ = -1912-4·16·432
Δ = 8833
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8833}=\sqrt{121*73}=\sqrt{121}*\sqrt{73}=11\sqrt{73}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-191)-11\sqrt{73}}{2*16}=\frac{191-11\sqrt{73}}{32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-191)+11\sqrt{73}}{2*16}=\frac{191+11\sqrt{73}}{32} $
| 4x+12=-72 | | 22x=-31 | | 1x1=4 | | -2=w/(-5) | | 2(x-3)+4=4x+18 | | 6=t−1 | | 5(2x+3)+5=100+2x | | 16y-12=24 | | 2(3x-4)+1=2(6x-3)-9x | | n+231=656 | | 2s=2 | | b+8=85 | | -24=2x+4(x-8) | | j-14=48 | | 2-2g=4 | | H=-16t^2+84t | | 5-2x2=-15 | | h+12=94 | | |10x-9|=0 | | 29/18+1/2*x=-5/3(x+1/3) | | 4(2x-3)=3x+48 | | -6+3x=5x-12 | | 290=20(x)+50 | | 9n-3=7n+21+2n= | | 6(1-p)=2(3-3p) | | 27x^=192 | | 2x2+20=-78 | | 23x=191 | | 51/2=d/16 | | 5/3j-6=36 | | 2(4x-15)=6x+2 | | -6/7m=84- |