If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(H)=(1/2H-6)(H+3)
We move all terms to the left:
(H)-((1/2H-6)(H+3))=0
Domain of the equation: 2H-6)(H+3))!=0We multiply parentheses ..
H∈R
-((+H^2+3H-6H-18))+H=0
We calculate terms in parentheses: -((+H^2+3H-6H-18)), so:We add all the numbers together, and all the variables
(+H^2+3H-6H-18)
We get rid of parentheses
H^2+3H-6H-18
We add all the numbers together, and all the variables
H^2-3H-18
Back to the equation:
-(H^2-3H-18)
H-(H^2-3H-18)=0
We get rid of parentheses
-H^2+H+3H+18=0
We add all the numbers together, and all the variables
-1H^2+4H+18=0
a = -1; b = 4; c = +18;
Δ = b2-4ac
Δ = 42-4·(-1)·18
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{22}}{2*-1}=\frac{-4-2\sqrt{22}}{-2} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{22}}{2*-1}=\frac{-4+2\sqrt{22}}{-2} $
| 2x^2+8x+6=1008 | | 1717/96=11/3x+19/4x | | 7x-(5x+3)=3x-39 | | x/4-9=10 | | k^2-8k+3=-9 | | 150=a*0.008 | | 2(g+6)+-7=-17 | | -9+3c=14+8c | | 7/10x=-3/5 | | 0.8y+30=-24 | | 16x^2-60x=0 | | -1/2n+-3/4n=-7/16 | | -6x4=11 | | 6x+58=9x−1 | | -3h=-18 | | 9/10y-2=-19/20y+3 | | 2+9n=4n+2 | | (5r)(-2)r5=-3 | | 3(3y-7)+4y=31 | | 61-x=159 | | 3.64−0.3(x+0.3)=x+0.2(0.6x−3.55)= | | 14s-45=s+59 | | 14s-45=s=59 | | 0=-2i(8-2i) | | 3j=-9 | | s+59=14s–45 | | 5n^2=-12 | | 14s–45=s+59 | | t-9.25=5,45 | | 3/2n+9/10=-1/5n-23/10 | | 2/5(7/8-6x)-5/8=3/8 | | 13v-1=4v+44 |