H(T)=-16t2+72t+24

Simple and best practice solution for H(T)=-16t2+72t+24 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(T)=-16t2+72t+24 equation:



()=-16H^2+72H+24
We move all terms to the left:
()-(-16H^2+72H+24)=0
We add all the numbers together, and all the variables
-(-16H^2+72H+24)=0
We get rid of parentheses
16H^2-72H-24=0
a = 16; b = -72; c = -24;
Δ = b2-4ac
Δ = -722-4·16·(-24)
Δ = 6720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6720}=\sqrt{64*105}=\sqrt{64}*\sqrt{105}=8\sqrt{105}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-8\sqrt{105}}{2*16}=\frac{72-8\sqrt{105}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+8\sqrt{105}}{2*16}=\frac{72+8\sqrt{105}}{32} $

See similar equations:

| t-13/2=3 | | 5x^2^3=180 | | 7x+9-9x=15-14x+12x-6 | | 9(3x+12)=81 | | Y=240x-30 | | 837=800+x+7 | | 84=x+20 | | 2x+15=3x+14 | | 31+(6x+1)=90 | | 4/9=x+4/2+13 | | x+(x*0.105)+(x*0.0495)+(x*0.00215)=3515.64 | | (m+5)(m+5)=-2m-10 | | 1.3(2.7x+1)=4.1-x | | 203.000(203.000)=83.000(83.000+x) | | 8x+12+10x-22=180 | | (2b-5)+227+(b+80)=983 | | h^2-4h=0 | | 4+(2x+3)=40 | | 8+2(x+3)=40 | | 8+2x+3=40 | | 4(n-14)=2(2n-7) | | -3(b-10)=12 | | 135=-9(-6-3k) | | 2(9-4y/2)+4y=18 | | 17=-25+6x | | 0.4(x-20)=0.1(-x+20) | | X+2(x-1)=5 | | 1/2n=9+15 | | 4(2x-3)=-6x-12 | | 2g^2-6g-9=0 | | 2x2x2x2x2=2x | | 5t-3=4t-10 |

Equations solver categories