If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3)=80+64H+-16H^2
We move all terms to the left:
(3)-(80+64H+-16H^2)=0
We use the square of the difference formula
-(80+64H-16H^2)+3=0
We get rid of parentheses
16H^2-64H-80+3=0
We add all the numbers together, and all the variables
16H^2-64H-77=0
a = 16; b = -64; c = -77;
Δ = b2-4ac
Δ = -642-4·16·(-77)
Δ = 9024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9024}=\sqrt{64*141}=\sqrt{64}*\sqrt{141}=8\sqrt{141}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-8\sqrt{141}}{2*16}=\frac{64-8\sqrt{141}}{32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+8\sqrt{141}}{2*16}=\frac{64+8\sqrt{141}}{32} $
| 1/4(w-4)3/4w=3 | | 7-5x=87 | | 12x+12=-3x^2 | | -9c+13=77 | | 12x+12=-3^2 | | H=16t^2+12t+1700 | | -6-24y=8 | | 14.8f+6.4=-8.48 | | -4(-x+1)=-2(x+2) | | -8=3n | | 3x=4(×-2.25) | | (y^2+5y-24/y^2-25)(y-5/y-3)=y | | 5x+4=8-11 | | y/9+46=50 | | w/8+68=73 | | 11+5z=26 | | 2x^2+5x-10=x^2+ | | -3p+-27=48 | | 9x+5-4x=-(-5x-5) | | 3x-(7x-10)=2 | | 9×=8x+17 | | 9x-23=29 | | 7/d+10=59 | | 2.2+v/3=-5.3 | | 3+4w=-9 | | 190=120-w | | x-7=90-14(x+8) | | 3x+5=5x−1 | | 3x-5(x-2)=3+5x-15 | | 8x/2;x=1.4= | | Y=200-8x | | 10x+4=2(8x-23) |