G(t)=4200-22/3t

Simple and best practice solution for G(t)=4200-22/3t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for G(t)=4200-22/3t equation:



(G)=4200-22/3G
We move all terms to the left:
(G)-(4200-22/3G)=0
Domain of the equation: 3G)!=0
G!=0/1
G!=0
G∈R
We add all the numbers together, and all the variables
G-(-22/3G+4200)=0
We get rid of parentheses
G+22/3G-4200=0
We multiply all the terms by the denominator
G*3G-4200*3G+22=0
Wy multiply elements
3G^2-12600G+22=0
a = 3; b = -12600; c = +22;
Δ = b2-4ac
Δ = -126002-4·3·22
Δ = 158759736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{158759736}=\sqrt{4*39689934}=\sqrt{4}*\sqrt{39689934}=2\sqrt{39689934}$
$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12600)-2\sqrt{39689934}}{2*3}=\frac{12600-2\sqrt{39689934}}{6} $
$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12600)+2\sqrt{39689934}}{2*3}=\frac{12600+2\sqrt{39689934}}{6} $

See similar equations:

| 8/r=3/4 | | 3b+20=6b-7 | | 17/3x=4/12x+48 | | 4(4x-2=16x-8 | | 15x-7=34+2x-253 | | -5X-8=-3x-18 | | x+x*4=13 | | 2x-1+6x+6+4x+7=180 | | (6x-40)+(8x+20)=(6x+60)+6x | | z−2÷1/4=2 | | 4x14=44 | | 2x=(-x/50)+160 | | x+2x+3x+4x+5x+6x+7x+8x+9x+10x+11x=100 | | 7^x=134 | | 9x-18=4x-3=3x | | 5y-12=134 | | 2a-121=21 | | 42=18t+4(t-5) | | 31+39+11x+11=180 | | x+2x+x*x*x=100 | | -79x+3=14 | | 0x+9=4x+6 | | x+x*x+x*x*x=100 | | 10x-5=6x+35 | | -4.8*(6.3x-4.18)=-58.56 | | 12x-8-12x=-8 | | 2p-10=10+40p | | 5n=12-n= | | 90+60+7x-12=180 | | 5−3(x+2)=−6x+2 | | -.3q+.002q^2=-.6q+.006q^2 | | 5(y–1)–5=45 |

Equations solver categories