F(x)=-(x-20)(x-100)

Simple and best practice solution for F(x)=-(x-20)(x-100) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=-(x-20)(x-100) equation:



(F)=-(F-20)(F-100)
We move all terms to the left:
(F)-(-(F-20)(F-100))=0
We multiply parentheses ..
-(-(+F^2-100F-20F+2000))+F=0
We calculate terms in parentheses: -(-(+F^2-100F-20F+2000)), so:
-(+F^2-100F-20F+2000)
We get rid of parentheses
-F^2+100F+20F-2000
We add all the numbers together, and all the variables
-1F^2+120F-2000
Back to the equation:
-(-1F^2+120F-2000)
We get rid of parentheses
1F^2-120F+F+2000=0
We add all the numbers together, and all the variables
F^2-119F+2000=0
a = 1; b = -119; c = +2000;
Δ = b2-4ac
Δ = -1192-4·1·2000
Δ = 6161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-119)-\sqrt{6161}}{2*1}=\frac{119-\sqrt{6161}}{2} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-119)+\sqrt{6161}}{2*1}=\frac{119+\sqrt{6161}}{2} $

See similar equations:

| 64=d-60 | | t/2-5/2=5 | | 5m-60=0 | | 6m-3m+4m=28 | | -23k=276 | | m/8=19 | | 0×4y=28×0 | | g-774=-193 | | −4 | | 5+6x+-2x=4+4x+1 | | −4 | | 21m=-231 | | 75x=5130 | | 6x+12-3x+12=0 | | 6x+12-3x-12=0 | | 11(11.20+x)=128.15 | | 42=p-132 | | 31b=496 | | -15y+7+7y=2y+70 | | 17x/3-16/9=0 | | x/3-4/1=23 | | n/23=31 | | 18x/5-26/10=0 | | 2/5a=7 | | 2x+4=70° | | x+4=2,x=4 | | -10=1/5c | | 5x+8-7=4x+1 | | 1/4n=n-15 | | 5=+20/4+2x8 | | 12.5=v÷5 | | 32×a=0 |

Equations solver categories