If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(F)=(F+3)(F+12)-(F+6)*2
We move all terms to the left:
(F)-((F+3)(F+12)-(F+6)*2)=0
We multiply parentheses ..
-((+F^2+12F+3F+36)-(F+6)*2)+F=0
We calculate terms in parentheses: -((+F^2+12F+3F+36)-(F+6)*2), so:We add all the numbers together, and all the variables
(+F^2+12F+3F+36)-(F+6)*2
We multiply parentheses
(+F^2+12F+3F+36)-2F-12
We get rid of parentheses
F^2+12F+3F-2F+36-12
We add all the numbers together, and all the variables
F^2+13F+24
Back to the equation:
-(F^2+13F+24)
F-(F^2+13F+24)=0
We get rid of parentheses
-F^2+F-13F-24=0
We add all the numbers together, and all the variables
-1F^2-12F-24=0
a = -1; b = -12; c = -24;
Δ = b2-4ac
Δ = -122-4·(-1)·(-24)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{3}}{2*-1}=\frac{12-4\sqrt{3}}{-2} $$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{3}}{2*-1}=\frac{12+4\sqrt{3}}{-2} $
| O=3+2g | | 7x+28=27-6x | | -5x+29=-16 | | 15=x/2+5 | | 5=35√x | | 5(2x+1)=5x-8 | | 8x-2=36x+36x+19 | | 3*1=72/f-5 | | x/2=9.7 | | 2y-8=3y-4 | | n=123931623+1/1.07339449189 | | 6z+5-4z=7+z+2 | | 145000000/1.17=1.17n/1.17 | | 16x-2=13x-17 | | 314=3.14×r^2 | | -2/3w-2/3=3/5w-5 | | 13-19/x=4+8/x | | 2p+0=3 | | (.12)(3000+x)=4200 | | 0+3t=-9 | | -0.60(30)+0.80x=0.20(30+x) | | 3x+3/2x+2x+3x+x=180 | | 2s-0=-4 | | 3000=4200-360x | | 3x/2-x/3=x-1 | | 185=(x+8)(x+8)-(x-3)(x+3) | | r+3.9=5 | | 5x+6x+7x=0 | | 12}.2y-5=7 | | 20x^2-59x+30=0 | | x/6+x=7/2 | | x^2+30x-121=0 |