F(2)=x2-9+5

Simple and best practice solution for F(2)=x2-9+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(2)=x2-9+5 equation:



(2)=F2-9+5
We move all terms to the left:
(2)-(F2-9+5)=0
We add all the numbers together, and all the variables
-(+F^2-9+5)+2=0
We get rid of parentheses
-F^2+9-5+2=0
We add all the numbers together, and all the variables
-1F^2+6=0
a = -1; b = 0; c = +6;
Δ = b2-4ac
Δ = 02-4·(-1)·6
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*-1}=\frac{0-2\sqrt{6}}{-2} =-\frac{2\sqrt{6}}{-2} =-\frac{\sqrt{6}}{-1} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*-1}=\frac{0+2\sqrt{6}}{-2} =\frac{2\sqrt{6}}{-2} =\frac{\sqrt{6}}{-1} $

See similar equations:

| 130=7x+1 | | 7x+1=130° | | 12-1/2x=9 | | F(0)=3x-19 | | 12x=143 | | F(-6)=14-5x | | 5a-10=10(1/4a+12) | | (6b+5)(b-1)=-3 | | -2-x/7=5 | | X=23-y | | 2x^2+13+6=90 | | 3x²+5x=6 | | s+10=2313 | | r3=14 | | 6/x=720 | | 60°=14x+4 | | 60°=(14x+4) | | 12/2x+1=x+6/7.5 | | 31≤3x+10=463x+10 | | 7(2x+7)-4=52 | | -6-8(7+4k)=-6(7+6k) | | 3x-19=-24 | | -5/8x+10+x=-8 | | 3+5n=1+8n+2 | | 4x=6(90-x) | | 28=k+16-2k-9 | | 2 | | 2 | | 2 | | H(t)=~16t^2+40t+6 | | x+27+13x-19=15x | | 18=(4a^2)^.625 |

Equations solver categories