If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=(3E-7)(3E-7)-(5E-1)(5E-3)
We move all terms to the left:
-((3E-7)(3E-7)-(5E-1)(5E-3))=0
We multiply parentheses ..
-((+9E^2-21E-21E+49)-(5E-1)(5E-3))=0
We calculate terms in parentheses: -((+9E^2-21E-21E+49)-(5E-1)(5E-3)), so:We get rid of parentheses
(+9E^2-21E-21E+49)-(5E-1)(5E-3)
We get rid of parentheses
9E^2-21E-21E-(5E-1)(5E-3)+49
We multiply parentheses ..
9E^2-(+25E^2-15E-5E+3)-21E-21E+49
We add all the numbers together, and all the variables
9E^2-(+25E^2-15E-5E+3)-42E+49
We get rid of parentheses
9E^2-25E^2+15E+5E-42E-3+49
We add all the numbers together, and all the variables
-16E^2-22E+46
Back to the equation:
-(-16E^2-22E+46)
16E^2+22E-46=0
a = 16; b = 22; c = -46;
Δ = b2-4ac
Δ = 222-4·16·(-46)
Δ = 3428
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$E_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$E_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3428}=\sqrt{4*857}=\sqrt{4}*\sqrt{857}=2\sqrt{857}$$E_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{857}}{2*16}=\frac{-22-2\sqrt{857}}{32} $$E_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{857}}{2*16}=\frac{-22+2\sqrt{857}}{32} $
| 6(x-9)=3x+6 | | 11x-20=9x+10 | | 8d+6d=7+1 | | 6x+32=9x+11 | | 3n-30=n+20+n+10 | | 6(x-9)=5x+6 | | 5x+63=15x+3 | | 8d+6d=7+1= | | n+20+2n+5+2n+5=180 | | 12(x+5)=8x=17 | | 0.4x=995 | | 7s=8=5s-8 | | 8x^-12x-308=0 | | 18t-15=3t+55 | | 4a=4a | | x^2-x-89=233 | | 60-6x^2=3x^2 | | x^2-x-1=385 | | x^2-x-1=89 | | F(x)=(6x2-2x)(x3+2x-1) | | 3a+18=a+26 | | 7p-3=-3p+17 | | 2x2+14x+49=169 | | 12x+2=3x-7 | | 5x-7/5+2x/7=4 | | 4a=12a | | 39=1/2(3x-1)(x+1) | | –5x–6=3x+26 | | 32x-4=4 | | 130*0.07^x=100*0.08637^x | | 1x-20=x5= | | 3x+6=5x-17 |