If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(B+450)+90(2B-90)+3/2B=540
We move all terms to the left:
(B+450)+90(2B-90)+3/2B-(540)=0
Domain of the equation: 2B!=0We multiply parentheses
B!=0/2
B!=0
B∈R
(B+450)+180B+3/2B-8100-540=0
We get rid of parentheses
B+180B+3/2B+450-8100-540=0
We multiply all the terms by the denominator
B*2B+180B*2B+450*2B-8100*2B-540*2B+3=0
Wy multiply elements
2B^2+360B^2+900B-16200B-1080B+3=0
We add all the numbers together, and all the variables
362B^2-16380B+3=0
a = 362; b = -16380; c = +3;
Δ = b2-4ac
Δ = -163802-4·362·3
Δ = 268300056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$B_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$B_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{268300056}=\sqrt{4*67075014}=\sqrt{4}*\sqrt{67075014}=2\sqrt{67075014}$$B_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16380)-2\sqrt{67075014}}{2*362}=\frac{16380-2\sqrt{67075014}}{724} $$B_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16380)+2\sqrt{67075014}}{2*362}=\frac{16380+2\sqrt{67075014}}{724} $
| 6i+4=52 | | 4r=-9r+91 | | 1/3x+1/3=12/313x+13=123 | | 18=2-v | | -3/2y-6=2/5y-2/5 | | 13x+13=12313x+13=123 | | 6y+-5=3y-4 | | 10=3x-4x+2 | | x+3x=10=90 | | -4.5=-0.5(-x-7.1) | | -30=-18+b | | y=-3(106)-12 | | 45=35+0.25x | | {w}{7}=14 | | n+(-6)=-6 | | 12.6=2n-3 | | 7x-4+3x-6=7x-4+3x+6 | | 4y+-5=3y-7 | | -6x-10=3x+14 | | h+10=13 | | -(2)/(3)(15x+3)=-3x-9 | | 87=4x-9 | | (9x-12)+42=180 | | 1-m-18m=20-18m | | 6i-6=48 | | -20=4n+6n | | -5(y+1)=3y-9+2(4y+6) | | 4x-3+x+5=3x+1-2x+6x-7 | | 77=–7t | | 8v=3v+25 | | 7u-8=10+4u | | 3x-5x+2=18 |