If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=2A^2+3A
We move all terms to the left:
-(2A^2+3A)=0
We get rid of parentheses
-2A^2-3A=0
a = -2; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·(-2)·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*-2}=\frac{0}{-4} =0 $$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*-2}=\frac{6}{-4} =-1+1/2 $
| q/4−2=1 | | 6u+18=-2u+16 | | 19=3–3d–5d | | (7x+24)+(7x-26)=180 | | s+19/3=9 | | 2x+2(3x+5)=3x+18+4(4x+5) | | 4(f+12)=76 | | 4+4w=-21 | | (8x-20)=(3x-5) | | s+13/8=4 | | 3a+26+6a+28=180 | | x+7–2x=18 | | 4h-18=38 | | C+18+3c=180 | | j/3+29=36 | | s/5-1=8 | | 72=-6r+12 | | (2x+7)=(5x+16) | | s/5−1=8 | | 9(b−80)=90 | | 2a+32=62 | | -3y+4=-23 | | -x/7+1=8 | | 4x+3(2x-7)=2x-5 | | j/9+26=32 | | -8(m+10)=96 | | g/2+10=12 | | x/5+7=1 | | 3(x-1)+x2=2(2x+1)+3 | | 8(c+1)=40 | | -u/8=-36 | | -u/8=-28 |