3(x-1)+x2=2(2x+1)+3

Simple and best practice solution for 3(x-1)+x2=2(2x+1)+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x-1)+x2=2(2x+1)+3 equation:



3(x-1)+x2=2(2x+1)+3
We move all terms to the left:
3(x-1)+x2-(2(2x+1)+3)=0
We add all the numbers together, and all the variables
x^2+3(x-1)-(2(2x+1)+3)=0
We multiply parentheses
x^2+3x-(2(2x+1)+3)-3=0
We calculate terms in parentheses: -(2(2x+1)+3), so:
2(2x+1)+3
We multiply parentheses
4x+2+3
We add all the numbers together, and all the variables
4x+5
Back to the equation:
-(4x+5)
We get rid of parentheses
x^2+3x-4x-5-3=0
We add all the numbers together, and all the variables
x^2-1x-8=0
a = 1; b = -1; c = -8;
Δ = b2-4ac
Δ = -12-4·1·(-8)
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{33}}{2*1}=\frac{1-\sqrt{33}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{33}}{2*1}=\frac{1+\sqrt{33}}{2} $

See similar equations:

| 8(c+1)=40 | | -u/8=-36 | | -u/8=-28 | | 2x+4(4x+4)=3x+18 | | u/5-15=28 | | 24=x/4-16 | | 2x+4(4x+4)=32 | | 8(c-98)=-16 | | h−822=9 | | 8(c−98)=–16 | | u−722=8 | | 9x+10=20.8 | | 4x^2-16x+46=0 | | t/10+27=34 | | -2(p-3)(p-9)=0 | | 1=n-2/9 | | 3a+72=7a-4 | | t10+ 27=34 | | S•m=35 | | 90+15t=5t^2 | | 4=7-3t | | -2p^2+24p-54=0 | | 15=z3+ 12 | | 13+8j=37 | | (m^2)+2m=0 | | 66=3(r-63) | | r5+14=21 | | 19-m=-7 | | 25+75x=100+50x | | r5+ 14=21 | | y−100–1=0 | | 9(d-93)=27 |

Equations solver categories