A=(10-7z)(10+7z)

Simple and best practice solution for A=(10-7z)(10+7z) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for A=(10-7z)(10+7z) equation:



=(10-7A)(10+7A)
We move all terms to the left:
-((10-7A)(10+7A))=0
We add all the numbers together, and all the variables
-((-7A+10)(7A+10))=0
We multiply parentheses ..
-((-49A^2-70A+70A+100))=0
We calculate terms in parentheses: -((-49A^2-70A+70A+100)), so:
(-49A^2-70A+70A+100)
We get rid of parentheses
-49A^2-70A+70A+100
We add all the numbers together, and all the variables
-49A^2+100
Back to the equation:
-(-49A^2+100)
We get rid of parentheses
49A^2-100=0
a = 49; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·49·(-100)
Δ = 19600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{19600}=140$
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-140}{2*49}=\frac{-140}{98} =-1+3/7 $
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+140}{2*49}=\frac{140}{98} =1+3/7 $

See similar equations:

| 54+4x=180 | | r-8=7-3r+7r | | (3+z)(4z+5)=0 | | A=(9x-7) | | (3z+z)(4z+5)=0 | | (9p/2)=2 | | (4-x)^2-(3x+1)(4-x)=0 | | x=8/49 | | 3n-14=55 | | 2/5+3/10x=5/9 | | X4+3x=-20 | | X+6/4=x/8 | | |v|-7=-2|v|+8 | | 2(x+3)=10x+5 | | 1/7m-1=8 | | 9x+2/5=2/5 | | 3f+5=2f+1= | | 3f+5=3f+1= | | e+8=3e+5= | | 7d-4=5d+3= | | 1-2|1+n|=-1 | | P=6400x−18x2−400=175400 | | C+5-4=c-10= | | -6(-6x-7)-5(3+2x)=1 | | 4b+7=2b+11= | | r-31=11 | | (1/2)x+8=14 | | 2a+3=a+10= | | (-2x^2)+(-2x)=0 | | 7+2(3)(2x-2)=6(x+7) | | (-10+x)2=3- | | -20=4(2x+6)-4(x+5) |

Equations solver categories