If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(A)=(11-22A)(8.5-2A)
We move all terms to the left:
(A)-((11-22A)(8.5-2A))=0
We add all the numbers together, and all the variables
A-((-22A+11)(-2A+8.5))=0
We multiply parentheses ..
-((+44A^2-187A-22A+93.5))+A=0
We calculate terms in parentheses: -((+44A^2-187A-22A+93.5)), so:We add all the numbers together, and all the variables
(+44A^2-187A-22A+93.5)
We get rid of parentheses
44A^2-187A-22A+93.5
We add all the numbers together, and all the variables
44A^2-209A+93.5
Back to the equation:
-(44A^2-209A+93.5)
A-(44A^2-209A+93.5)=0
We get rid of parentheses
-44A^2+A+209A-93.5=0
We add all the numbers together, and all the variables
-44A^2+210A-93.5=0
a = -44; b = 210; c = -93.5;
Δ = b2-4ac
Δ = 2102-4·(-44)·(-93.5)
Δ = 27644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{27644}=\sqrt{4*6911}=\sqrt{4}*\sqrt{6911}=2\sqrt{6911}$$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(210)-2\sqrt{6911}}{2*-44}=\frac{-210-2\sqrt{6911}}{-88} $$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(210)+2\sqrt{6911}}{2*-44}=\frac{-210+2\sqrt{6911}}{-88} $
| x+5+x=2x+6 | | 30+.8x=14+1.20x | | A(x)=11-22x | | 14m+7=63 | | -11+1=-5(x+3) | | -4x-117=57-10x | | 4×+5y=30 | | (x-6)+9+(2x-19)=22 | | -1.7x-8.4=-27.1 | | x2+10x+26=0 | | 3/8+b/3=5 | | –10r−2=9−10r | | -31-x=-5x+25 | | 6n+3(5n+8)=-18 | | 5x+4+4x+14+6x-3=80 | | 65-u=46 | | -5/9c=20 | | -2x6=4x-26 | | -4y=-4-6 | | 9.5=4*x/1000 | | 2x-121=-9x+154 | | -4y=-4-4 | | K/7-6=0.43k+18 | | -4y=-4+2 | | -2x-55=25-7x | | 50x+100=75x+25 | | 32x+4=36x–3 | | 16+8v=48 | | 4f-43=53 | | F(4)=3.14r2 | | 2r/3-7=-9 | | -57+11x=83+6x |