If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2-12+4=0
We add all the numbers together, and all the variables
9y^2-8=0
a = 9; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·9·(-8)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*9}=\frac{0-12\sqrt{2}}{18} =-\frac{12\sqrt{2}}{18} =-\frac{2\sqrt{2}}{3} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*9}=\frac{0+12\sqrt{2}}{18} =\frac{12\sqrt{2}}{18} =\frac{2\sqrt{2}}{3} $
| 2/3s−2/3=s/6+4/3 | | X-7=h | | -5(8r-3)+8r=15 | | 57=9-4z | | (x+1)^2=64 | | 16x+13=17x+6 | | 7(4-6n)=70 | | 11x-2=68 | | 2y2-6=0 | | −(7x+18)−2x=0 | | -4(5p+8)=-32 | | 4z(z+3)=4z+5 | | 1/5x9/10x=15-64 | | k-k+3k+2k=20 | | 8−3(6x+8)=7x+34 | | (13x2+5x)=8x2 | | 2x^+14x+24=0 | | y/3+1=6 | | -7(w+8)=9w-40 | | 10+5+3=x | | 6-3(2x-3)=4 | | -22-x=6x+9 | | 3s-2s+4s-2s=6 | | (4-u)(5u+6)=0 | | x-3x=11-7 | | y/7-6=-6 | | 267=5(8n+4)=7 | | Y=100(1.04)t | | 4g-2g-g+3g+4g=8 | | 26=-8+3x | | m2−14m+49=0 | | m2+18m+16=45 |