If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-6=0
a = 2; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·2·(-6)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*2}=\frac{0-4\sqrt{3}}{4} =-\frac{4\sqrt{3}}{4} =-\sqrt{3} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*2}=\frac{0+4\sqrt{3}}{4} =\frac{4\sqrt{3}}{4} =\sqrt{3} $
| −(7x+18)−2x=0 | | -4(5p+8)=-32 | | 4z(z+3)=4z+5 | | 1/5x9/10x=15-64 | | k-k+3k+2k=20 | | 8−3(6x+8)=7x+34 | | (13x2+5x)=8x2 | | 2x^+14x+24=0 | | y/3+1=6 | | -7(w+8)=9w-40 | | 10+5+3=x | | 6-3(2x-3)=4 | | -22-x=6x+9 | | 3s-2s+4s-2s=6 | | (4-u)(5u+6)=0 | | x-3x=11-7 | | y/7-6=-6 | | 267=5(8n+4)=7 | | Y=100(1.04)t | | 4g-2g-g+3g+4g=8 | | 26=-8+3x | | m2−14m+49=0 | | m2+18m+16=45 | | x-2x=11-7 | | 5(p-4)(p+7)(2p-9)=0 | | 2x^2-10x-1=0 | | r+r+4r-2r+2r=18 | | g/4+17=22 | | c-c+2c+2c+4c=16 | | 3w-12=15 | | 3y+5=60 | | 2y-82=y |