If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2/3=13.5
We move all terms to the left:
9x^2/3-(13.5)=0
We add all the numbers together, and all the variables
9x^2/3-13.5=0
We multiply all the terms by the denominator
9x^2-(13.5)*3=0
We add all the numbers together, and all the variables
9x^2-40.5=0
a = 9; b = 0; c = -40.5;
Δ = b2-4ac
Δ = 02-4·9·(-40.5)
Δ = 1458
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1458}=\sqrt{729*2}=\sqrt{729}*\sqrt{2}=27\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-27\sqrt{2}}{2*9}=\frac{0-27\sqrt{2}}{18} =-\frac{27\sqrt{2}}{18} =-\frac{3\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+27\sqrt{2}}{2*9}=\frac{0+27\sqrt{2}}{18} =\frac{27\sqrt{2}}{18} =\frac{3\sqrt{2}}{2} $
| 8x+0.9=40.9 | | -5+3x=-4x+9 | | 28=7(j−89) | | −3(3x−2)−3x−1=−103 | | 3(y+1)=18y | | 5(k+5)=50 | | 34+x=157= | | 4+2x=(2x+3)+4 | | 62,125*(9/4)=x | | 10=5(7r+3)-5(r-5) | | 3x+5(4x+22)=-5 | | h/3+12=9 | | 130+m=1830 | | -7+8x=-10-8x | | (2)=2x-4 | | 5x+25+120=180 | | -8+6d=104d | | 23=3(9f-5) | | 1830+130=s | | x+58+x=180 | | -5x+2(3x-21)=-35 | | -14-7m=(-3m-4) | | 0.5w*w=25 | | -3+2p=-1 | | -3n-32=-2(5-4n) | | -3+2p=-3 | | 6x+3=-18x+12 | | X2=x+9 | | 3h+10=8 | | (6y+6)-(3+5y)=12 | | -5(v+3)=35 | | 2/3n+2=13/6 |