If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-155x-500=0
a = 9; b = -155; c = -500;
Δ = b2-4ac
Δ = -1552-4·9·(-500)
Δ = 42025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{42025}=205$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-155)-205}{2*9}=\frac{-50}{18} =-2+7/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-155)+205}{2*9}=\frac{360}{18} =20 $
| 4x-25=38+13x | | -5(x+1)(x-3)=0 | | 6x^2+41x+-7=0 | | 2x-1/3+x/4=6/4 | | 2(x-1)^2+0=1 | | 3a=-2.1 | | (7x+6)/5+(2x-7)/3=3 | | 9x2-200x-455=0 | | {(2x-1)/(x+1)}-15{(x+1)/(2x-1)}=-2 | | X^2-1x=18 | | 10y-6y-13=46.80 | | (x-3)^2-121=0 | | 7x+6/5+2x-7/3=3 | | 3x/4-5x/8=1/2 | | 4y2+12y−29=11 | | 50+25t-5t^2=0 | | 120x=(120-10x)(x+1) | | -4.5x=18 | | -12=y-3 | | 7(10(3x+x)+x)=4(10x+3+x) | | 2x+20=5x+4 | | -9x^2+25=0 | | 3(x+5)-25=9+2(×-7) | | 0=y^2-2y-1 | | Y=10x-25-x^2 | | 6x2+5x-22.5=0 | | -2/5x+2/15=2/3 | | 18y-14y=12 | | -y/3+2=6 | | 7y+10+3y-9=0 | | 18x-4=2(8-x) | | 3х2-16x+21=0 |