If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-147=0
a = 9; b = 0; c = -147;
Δ = b2-4ac
Δ = 02-4·9·(-147)
Δ = 5292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5292}=\sqrt{1764*3}=\sqrt{1764}*\sqrt{3}=42\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42\sqrt{3}}{2*9}=\frac{0-42\sqrt{3}}{18} =-\frac{42\sqrt{3}}{18} =-\frac{7\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42\sqrt{3}}{2*9}=\frac{0+42\sqrt{3}}{18} =\frac{42\sqrt{3}}{18} =\frac{7\sqrt{3}}{3} $
| 125+9x=5+49x | | -6x-4-4x=56 | | -m-1+2m+4=2m-2 | | 10(x+1)=56–2(x-1) | | 10b+8=98 | | 12b+7=55 | | 6x=3^4x-8 | | −60 = −6xx = | | 10b+8=28 | | 5(21+6x)=255 | | 8=3x^2+2x | | 40x-32x^2=0 | | 3d+5=35 | | 2x+4=10-1x | | 7x+11=2x-14 | | 14d+2=30 | | 1÷10•x=(-3) | | 1x=15=72 | | 2.3x+26=3x-42 | | x+x−x= | | -12+3x=180 | | 1÷10•x=3 | | 41=12n-7 | | 6d+8=56 | | 4x*x=0 | | 2x-5=-5x+16 | | 8z-(4z+10)=3(z-2) | | -2.5494x=19.88532 | | -1=2x-x-3 | | 6x-24=-29+x | | 15n+5=35 | | -2x+1=x+6-2x |