If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+4x-8=0
a = 9; b = 4; c = -8;
Δ = b2-4ac
Δ = 42-4·9·(-8)
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{19}}{2*9}=\frac{-4-4\sqrt{19}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{19}}{2*9}=\frac{-4+4\sqrt{19}}{18} $
| -8x2+40=0 | | x+x-9+x+7=1.48 | | 1/3(21-9b)=-b/4 | | x+x+8+3x=67 | | 2(6z-12)=32 | | 7a/3=7 | | x^2+5x-3=3x+7 | | x-10+2x+x=54 | | -5x2+30x=0 | | 30x-40=50x | | 6x-2x-8=x+10 | | 6d−3=7d | | 737b-8=0 | | 50/60=x/1 | | X+2+2x+x=51 | | 50/60=x/10 | | 10+5(m-1)=50 | | x=+0.3=3.3 | | -10x+5=-6x+35 | | 2x+7=9x–14 | | 6p-5p-5=8-2p+10 | | 2x+2^(7-x)=24 | | 21x+1=10 | | x(x-11)73=180 | | 2x+2^7-x=24 | | 8n+7=31+8 | | 15j+9=16j | | m-9=-13+2m | | 3x+(2*35+5)=180 | | 2(4x-2)=8(x-7 | | -3+5g-2g=-18 | | 7p+2=16 |