9x-(1x-36)=1x(-7+x)

Simple and best practice solution for 9x-(1x-36)=1x(-7+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9x-(1x-36)=1x(-7+x) equation:



9x-(1x-36)=1x(-7+x)
We move all terms to the left:
9x-(1x-36)-(1x(-7+x))=0
We add all the numbers together, and all the variables
9x-(x-36)-(1x(x-7))=0
We get rid of parentheses
9x-x-(1x(x-7))+36=0
We calculate terms in parentheses: -(1x(x-7)), so:
1x(x-7)
We multiply parentheses
x^2-7x
Back to the equation:
-(x^2-7x)
We add all the numbers together, and all the variables
8x-(x^2-7x)+36=0
We get rid of parentheses
-x^2+8x+7x+36=0
We add all the numbers together, and all the variables
-1x^2+15x+36=0
a = -1; b = 15; c = +36;
Δ = b2-4ac
Δ = 152-4·(-1)·36
Δ = 369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{369}=\sqrt{9*41}=\sqrt{9}*\sqrt{41}=3\sqrt{41}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-3\sqrt{41}}{2*-1}=\frac{-15-3\sqrt{41}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+3\sqrt{41}}{2*-1}=\frac{-15+3\sqrt{41}}{-2} $

See similar equations:

| 9x-(1x-36)=3x(-7+x) | | 4(3x-7)=12x-15+3 | | -8/9y=-3/7 | | 2×(5y+12)=y+4×2 | | (10y+1+y)=0 | | 10y+1+y)=0 | | -1/7a=-3 | | 13x13x13x67x67=13^x | | -(j+20)=-2 | | 119+x+x=180 | | 12b-6=42 | | –8g=4−6g | | 1/4y+9=5y+2/3 | | z+9=–2z | | (4m)-5+m-5=50 | | Y=525-25x | | 17-7=-3x+12 | | 3(w+13)=-18 | | 1/4x+3=1/2x+5 | | w/2–(-3.45)=-1.2 | | 101/3x=45 | | 47x+2653x-80=54(50x+41) | | –6+–2t=–14 | | 2(3a-5)(-2a=3) | | 0.3(x–6)=0.2x+0.5x+7-4 | | 9x+.05=16 | | x+8/x+3=2 | | 3(2y+8)=-6 | | 3(3x+4)=13x+8-4x4 | | 0.02(10)+0.05(x)=0.03(x+10) | | 55=4m+m | | (5x-43)+(4x-11)=150 |

Equations solver categories