If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x+45=153/7x
We move all terms to the left:
9x+45-(153/7x)=0
Domain of the equation: 7x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
9x-(+153/7x)+45=0
We get rid of parentheses
9x-153/7x+45=0
We multiply all the terms by the denominator
9x*7x+45*7x-153=0
Wy multiply elements
63x^2+315x-153=0
a = 63; b = 315; c = -153;
Δ = b2-4ac
Δ = 3152-4·63·(-153)
Δ = 137781
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{137781}=\sqrt{6561*21}=\sqrt{6561}*\sqrt{21}=81\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(315)-81\sqrt{21}}{2*63}=\frac{-315-81\sqrt{21}}{126} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(315)+81\sqrt{21}}{2*63}=\frac{-315+81\sqrt{21}}{126} $
| 2-4(a+1)=8+a | | -4-6x=2(-3x-2) | | 7a+3=180 | | 7a+3=90 | | 3|n|=3 | | 80-w=169 | | 12^(n-3)=60 | | 3+(-2k)=14 | | -6u+3(u+8)=12 | | 4+.5x+3=10 | | -4-6x=-6x-4 | | 5/40=w/3 | | 7z-204=3(4-6z)-2z | | (4x+5)+(4x+5)+(2x+10)=180 | | 16+(x-6)/(-5)=-8 | | 9x+x=49 | | x+8=-x+3x | | x2+√5x–19=0 | | 5|5-10x|=30 | | Y-8=-1|2(x+4) | | 100-2q=-20+10q | | -4-6x=2(-3-2) | | 197x+6=11 | | 7(3)+5y=41 | | 12x+10x+14x=80 | | n=12=20 | | z12/3=4 | | 3(6p-1)=-11p-45 | | 14x+14=13x+13 | | 11(7^t)=5(2^t) | | 10-2(x+4)=4(2x-2) | | 16x=7x+3 |