If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9w^2+9w+1=0
a = 9; b = 9; c = +1;
Δ = b2-4ac
Δ = 92-4·9·1
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3\sqrt{5}}{2*9}=\frac{-9-3\sqrt{5}}{18} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3\sqrt{5}}{2*9}=\frac{-9+3\sqrt{5}}{18} $
| -8g=-6g+6 | | X=10/3y | | 5(1-2x)+8x=13 | | -11+v=9v+11-17v | | -(6m+8)=4(17-m)= | | -57+11=-4(2y+4) | | (m+2)/5=10 | | 9u2-2u-5=0 | | 2(3x+5)=-11+3 | | 5x−21=2x+42 | | -18=-3/7x | | 7x-18+2x-2=8x+1 | | F(-3)=9x^2-5x+2 | | -19=v/3 | | 3x+1=x5 | | 5x–36=2(-7x+1) | | 2r2+7r=0 | | -57+11=-4(2y+40 | | -3/4(2x+10)=-4x-5 | | 6x-3(x-4)=33 | | -3y+8+8(-2y)=12 | | 3(x+2)-3=4x+8 | | -8g=-6g*6 | | -3+y/5=-13 | | +5x=18+3x | | 9−4x=29 | | 5y+35=-2(-y+1) | | x+1.9=4.1 | | 5x−21+2x=42 | | 2-18r=-7r+2 | | 5x+2(3x-1)=9x+1 | | 4(x+4)=(x-2)7 |