If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9u^2-2u-5=0
a = 9; b = -2; c = -5;
Δ = b2-4ac
Δ = -22-4·9·(-5)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{46}}{2*9}=\frac{2-2\sqrt{46}}{18} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{46}}{2*9}=\frac{2+2\sqrt{46}}{18} $
| 2(3x+5)=-11+3 | | 5x−21=2x+42 | | -18=-3/7x | | 7x-18+2x-2=8x+1 | | F(-3)=9x^2-5x+2 | | -19=v/3 | | 3x+1=x5 | | 5x–36=2(-7x+1) | | 2r2+7r=0 | | -57+11=-4(2y+40 | | -3/4(2x+10)=-4x-5 | | 6x-3(x-4)=33 | | -3y+8+8(-2y)=12 | | 3(x+2)-3=4x+8 | | -8g=-6g*6 | | -3+y/5=-13 | | +5x=18+3x | | 9−4x=29 | | 5y+35=-2(-y+1) | | x+1.9=4.1 | | 5x−21+2x=42 | | 2-18r=-7r+2 | | 5x+2(3x-1)=9x+1 | | 4(x+4)=(x-2)7 | | 3r+r=-20 | | 4(4.5-8x)=24.5 | | 3/5x+20=32 | | 4/5(3x+6)−8=4 | | 11-3(x-2)=26 | | -(5x-6)=-45 | | 4x-4(7-4x)=22+5x | | 1/2(6x+10)=−7 |