If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9v^2-4=0
a = 9; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·9·(-4)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*9}=\frac{-12}{18} =-2/3 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*9}=\frac{12}{18} =2/3 $
| (x+8)^2=-2x | | 6(1-6m)=186 | | (k+3)(k+9)=0 | | 1.34x=10.72 | | 75+5m=135 | | 6(1-6m)=—126 | | F(x)=3x-27/x(x-9) | | (7w/12)+2=(5w)/8 | | 17-6x=3-9x | | (4v-5)(-2v+8)=0 | | 3-22=60n | | -2d(d-1)=0 | | 28=4u | | -35=w/5-5 | | 7=-11+(3b+15) | | -4n−7=-3n | | 2(5x-5)=-90 | | z-12=27 | | 2d(d-1)=0 | | 2d-14=d | | -2(1+4m)+6m=-2+6m | | (r+7)(r-3)=0 | | 1/3x=15/12 | | 3z2+20z-7=0 | | X^2+5y^2=3 | | 20=-4x-4 | | (f-6)=-(f+8) | | -2x+3x=5+1 | | 10x-4(x+1)=2 | | 124=-2(4n-6)-6n | | 4(20y-12)-2y=28.16 | | 2x-x+8x-x+8=88 |