If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9d^2-18d=0
a = 9; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·9·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*9}=\frac{0}{18} =0 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*9}=\frac{36}{18} =2 $
| (2p-2)/2=(p+4)/4 | | 8-5x=4x+9 | | 2(x+4)-4x=3(x-1) | | p-20=-6 | | 6(n-88)=66 | | 5x+3(4x+1)=71 | | 5x-42=4x-28 | | x+7/3=x/4 | | 8s+9=7s+7 | | -4(1-8n)+2=222 | | 6/9m-1/9=1/72 | | w/4-(-11)=20 | | -3x(3x-4)=6(-x+3) | | -2(2x-3)=10-3x-3-x | | 2(x-7)=-35 | | 100=-5(2x+4)-5 | | / 6z+10=4z+19 | | -18.7=-1.2+u/7 | | 1/2x-3/4x=2-6 | | m/8-58=-49 | | −12=8+f/2 | | x+53=2x+18 | | 11=20-4x | | -4y+6=2y-2 | | 16x+12-8x=4(2x+3) | | 1z+3=-6 | | 5x−4=40 | | 2z=9 | | w/3+1.4=-6.1 | | 3y+5y-2(3y)=42 | | 30m^2+24m+6=0 | | 2/ 2z=9 |