If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9c^2-18c+8=0
a = 9; b = -18; c = +8;
Δ = b2-4ac
Δ = -182-4·9·8
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6}{2*9}=\frac{12}{18} =2/3 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6}{2*9}=\frac{24}{18} =1+1/3 $
| 360/x=18 | | 13g=(9-12g)-5 | | 18-(3*x)=39 | | 5^x-3=75 | | -19=y/3-7 | | 18=u/3+12 | | 2x+9x−2=312x+9x−2=312x+9x−2=312x+9x−2=31 | | 18=-0.25x+20.5 | | y/4-15=18 | | 10=-4n+6n | | 7y+14=84 | | 4.2x+100=17.64+10x | | 2/3(6x+2)=10x+1 | | 1/5x+15=32 | | 4^2x=17 | | 4x-5+2(x-3)=12=7 | | 1.2(b-12)=42 | | 4^x=19 | | (x+5)^2-4=12 | | 2/5x-19/5=-11x | | 3/8(22x+3)=1/8(6x+19) | | 2x=6–x | | 3+6x=-21 | | 60=2(x+2) | | 2x=6–x | | 27=-6n=9 | | -8x(4x-5)=-10-7x | | 7x-4=7^8 | | 3(5x+22)=4(x+55) | | 9x+94=7(2+7x) | | X2+5x=-6 | | 7.5x=1 |