If it's not what You are looking for type in the equation solver your own equation and let us solve it.
98=(17-2x)(9-2x)
We move all terms to the left:
98-((17-2x)(9-2x))=0
We add all the numbers together, and all the variables
-((-2x+17)(-2x+9))+98=0
We multiply parentheses ..
-((+4x^2-18x-34x+153))+98=0
We calculate terms in parentheses: -((+4x^2-18x-34x+153)), so:We get rid of parentheses
(+4x^2-18x-34x+153)
We get rid of parentheses
4x^2-18x-34x+153
We add all the numbers together, and all the variables
4x^2-52x+153
Back to the equation:
-(4x^2-52x+153)
-4x^2+52x-153+98=0
We add all the numbers together, and all the variables
-4x^2+52x-55=0
a = -4; b = 52; c = -55;
Δ = b2-4ac
Δ = 522-4·(-4)·(-55)
Δ = 1824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1824}=\sqrt{16*114}=\sqrt{16}*\sqrt{114}=4\sqrt{114}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(52)-4\sqrt{114}}{2*-4}=\frac{-52-4\sqrt{114}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(52)+4\sqrt{114}}{2*-4}=\frac{-52+4\sqrt{114}}{-8} $
| -52(3-x)=102/5(x+5) | | (11x+10)=(6x+9)+(4x+13) | | 28j=700 | | 832=13b | | 552=12t | | 348=29u | | 810=5g | | y=(12.5)(2)= | | 13h=455 | | y=(12.5)(1)= | | 12=t/13 | | g^2+18=0 | | 100=q+5 | | Y^3-3y^2=0 | | 8x=25=57 | | 1⅙x25/12= | | 1200=p^2+20p | | 2x+12x-3=90 | | 46+b=120 | | 100*1,1^x=100000 | | 100*1.1^x=100000 | | x/8+x/8=2 | | 2x-10.7=2.1 | | p5p−8=22+2p | | 7+v/8.75=14 | | 13+9x=-32 | | 5x-6=3(x=1) | | -5=10(x-2)+8 | | y=4^1.2 | | 7.9x+6=-4x-9.6 | | -4=m1(-1) | | -30p-80-3+5p=-108 |