If it's not what You are looking for type in the equation solver your own equation and let us solve it.
936=(2x+4)(x+6)
We move all terms to the left:
936-((2x+4)(x+6))=0
We multiply parentheses ..
-((+2x^2+12x+4x+24))+936=0
We calculate terms in parentheses: -((+2x^2+12x+4x+24)), so:We get rid of parentheses
(+2x^2+12x+4x+24)
We get rid of parentheses
2x^2+12x+4x+24
We add all the numbers together, and all the variables
2x^2+16x+24
Back to the equation:
-(2x^2+16x+24)
-2x^2-16x-24+936=0
We add all the numbers together, and all the variables
-2x^2-16x+912=0
a = -2; b = -16; c = +912;
Δ = b2-4ac
Δ = -162-4·(-2)·912
Δ = 7552
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7552}=\sqrt{64*118}=\sqrt{64}*\sqrt{118}=8\sqrt{118}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8\sqrt{118}}{2*-2}=\frac{16-8\sqrt{118}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8\sqrt{118}}{2*-2}=\frac{16+8\sqrt{118}}{-4} $
| x/5+8=-2 | | (24)(39)=(2x+4)(x+6) | | 4a^2=28+6a | | R+12r=-4 | | 6(x+3)+3(2x-4)=30 | | 11k^2-9k=4 | | 9x4=85 | | 2(x+4)-3(x=6)=1 | | (6x+2)+(10X-8)=90 | | 8=e/3+8 | | 0=e/3 | | 9-s=12 | | 5(x-3)-3(x-4)=5 | | v/4+7=11 | | y=X^2+18 | | 1/3^3x+5=9x-1 | | 129=24x-3 | | b=36/64 | | x-3-4=2 | | b=72/128 | | b=6/8 | | b=9/36 | | b=18/32 | | 8x+4x=6 | | 9y=24+5y | | 2-3y-14=0 | | 8v=18-v | | 2x+3=99 | | 6b^2+3b-9=0 | | 7x÷15-1=22 | | 7t+14=3t-15 | | 4/14=x/35 |