90=(2x+2)(3x-5)

Simple and best practice solution for 90=(2x+2)(3x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 90=(2x+2)(3x-5) equation:



90=(2x+2)(3x-5)
We move all terms to the left:
90-((2x+2)(3x-5))=0
We multiply parentheses ..
-((+6x^2-10x+6x-10))+90=0
We calculate terms in parentheses: -((+6x^2-10x+6x-10)), so:
(+6x^2-10x+6x-10)
We get rid of parentheses
6x^2-10x+6x-10
We add all the numbers together, and all the variables
6x^2-4x-10
Back to the equation:
-(6x^2-4x-10)
We get rid of parentheses
-6x^2+4x+10+90=0
We add all the numbers together, and all the variables
-6x^2+4x+100=0
a = -6; b = 4; c = +100;
Δ = b2-4ac
Δ = 42-4·(-6)·100
Δ = 2416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2416}=\sqrt{16*151}=\sqrt{16}*\sqrt{151}=4\sqrt{151}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{151}}{2*-6}=\frac{-4-4\sqrt{151}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{151}}{2*-6}=\frac{-4+4\sqrt{151}}{-12} $

See similar equations:

| 8x+37=11x+23 | | 9y-13=5y+18 | | 2.2x-1.1=-9.9 | | 18.8=6.28r | | 5-7k=-4(k+1)=3 | | 2x²+15x+27=0 | | 4x-4=8x+16 | | (x-3)^2=54 | | 41=41+m | | 4(8p+3)=116 | | 7+5z-7=4-8z+113 | | 6(5/6x)+2/3=-9 | | `12={1}{2}x-3` | | |u+4|=13 | | x-33(2x-7)=76 | | 8=4x^2-x+32 | | k+11=3(-3-3k) | | 7(1-2b)=91 | | 14+12x=-16+x | | 9x-5=3x-31 | | 15+1x+1x+8=17 | | 147-x=199 | | x-2/5=-2/14 | | 2x-8+4x=-2 | | 6x/5+4=14.2 | | 9x+5+3x=31 | | 4/5y=7/15-y/15+2/3 | | 7(1-3h)=133 | | 3x^2+32=2x | | 9x-6=15x+4 | | -4+v/4=-8 | | 99x-7=-7 |

Equations solver categories