If it's not what You are looking for type in the equation solver your own equation and let us solve it.
90+x+3/2x+(x+45)+(2x-90)=540
We move all terms to the left:
90+x+3/2x+(x+45)+(2x-90)-(540)=0
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
x+3/2x+(x+45)+(2x-90)-450=0
We get rid of parentheses
x+3/2x+x+2x+45-90-450=0
We multiply all the terms by the denominator
x*2x+x*2x+2x*2x+45*2x-90*2x-450*2x+3=0
Wy multiply elements
2x^2+2x^2+4x^2+90x-180x-900x+3=0
We add all the numbers together, and all the variables
8x^2-990x+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $
| 25x+50=75 | | 2x-1/8-1=x+5/7 | | 3x+4x+x=16 | | 20=m2 | | 19x+38=57 | | 19x+38=52 | | 4^(2(x+5))-11=245 | | 441=t2 | | 17x+34=51 | | -x+2(x-1)=3x+4 | | X-3+6=-4+2x | | 20x+40=200 | | 20+7=3x | | 18x+36=140 | | 17x-4=(11x+20)+3x | | 0.5x+1.2=0.6+0.2x | | (6-x)(3x+7)=0 | | x-16+2x-99+.5x+8=180 | | -9x-6=-3x+30 | | x-40+2x-234+.5x+20=180 | | 8=u+34/8 | | 5h+7=4h+7 | | x-40+2x-234+1/2x+20=180 | | -3/8c-11=13 | | 19=11+2q | | 3(x=5)+12 | | 3b+75+b=225 | | z=4-4z | | 3r+2r=-15+8r | | a^2+12a-67=0 | | 3j=4=10 | | -(8+2)=10-4n |