If it's not what You are looking for type in the equation solver your own equation and let us solve it.
441=t2
We move all terms to the left:
441-(t2)=0
We add all the numbers together, and all the variables
-1t^2+441=0
a = -1; b = 0; c = +441;
Δ = b2-4ac
Δ = 02-4·(-1)·441
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42}{2*-1}=\frac{-42}{-2} =+21 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42}{2*-1}=\frac{42}{-2} =-21 $
| 17x+34=51 | | -x+2(x-1)=3x+4 | | X-3+6=-4+2x | | 20x+40=200 | | 20+7=3x | | 18x+36=140 | | 17x-4=(11x+20)+3x | | 0.5x+1.2=0.6+0.2x | | (6-x)(3x+7)=0 | | x-16+2x-99+.5x+8=180 | | -9x-6=-3x+30 | | x-40+2x-234+.5x+20=180 | | 8=u+34/8 | | 5h+7=4h+7 | | x-40+2x-234+1/2x+20=180 | | -3/8c-11=13 | | 19=11+2q | | 3(x=5)+12 | | 3b+75+b=225 | | z=4-4z | | 3r+2r=-15+8r | | a^2+12a-67=0 | | 3j=4=10 | | -(8+2)=10-4n | | 10a^2+4=0 | | n^2+4n-40=0 | | n^2+2n-89=0 | | c−216=204 | | 20+6x=94 | | 5x-3=-3x^2 | | 4f=56 | | 7+b/2=22 |